Composição (da esquerda para a direita): Ana Carina, Larissa Scarlet, Mariele Amaro, Renata felizardo, Jardson Oliveira e Leandro Januário.
quinta-feira, 17 de julho de 2014
terça-feira, 3 de junho de 2014
Simulados MatheFanatikos
Estude mais com os simulados do MatheFanatikos!!!
Veja os novos no gadgets ao lado.
Novidades!!! Simulados de Matrizes e introdução ao Estudo das Funções!
Física-Matemática - O que é?
1.
O que é Física-matemática?
A Física-matemática é uma aplicação da
matemática a problemas na física e no desenvolvimento de métodos matemáticos
adequados para tais aplicações e para a formulação e prova de teoremas que
surgem desses problemas físicos.
Em suma, um físico-matemático prova, com
todo o rigor matemático, as conjecturas colocadas por físicos teóricos.
2.
Algum comentário para fazer propaganda da área?
Essa área é bastante extensa e possui
diversas ramificações como nos problemas em biologia, teoria de redes (com o
método de grafos) e mecânica estatística. Destaca-se a minha área: Métodos
assintóticos em equações diferenciais parciais. Nesse nicho, procura-se
determinar como soluções de equações parabólicas não lineares se comportam para
tempos muito longos, isto é, utilizam-se as idéias da física, em particular as
idéias de grupos de renormalização, para descrever o comportamento das soluções
de equações diferenciais parciais em longos tempos.
3.
Qual o aluno que deveria estudar Física-matemática?
Não se tem um perfil ideal de aluno que deva
estudar física-matemática, mas ao aluno interessado em ingressar nessa área é
necessário acima de tudo vontade de aprender e dedicação. Quanto à formação
acadêmica, a partir do 4º período de matemática já é possível ingressar na
área, tendo feito os cálculos (I, II e III), EDA, EDB e as disciplinas básicas
da física. Ainda como pré-requisito é necessário o bom entendimento de
problemas físicos, uma vez que nessa área o aluno deve ser capaz de formular
conjecturas e teoremas (que muitas vezes não “estão prontos”) e prová-los.
sexta-feira, 30 de maio de 2014
segunda-feira, 26 de maio de 2014
Jogos matemáticos - SUDOKU
Sudoku , por vezes escrito Su Doku, (em japonês: 数独, sūdoku) é um quebra-cabeça baseado na colocação lógica de números. O objetivo do jogo é a colocação de números de 1 a 9 em cada uma das células vazias numa grade de 9x9, constituída por 3x3 subgrades chamadas regiões. O quebra-cabeça contém algumas pistas iniciais, que são números inseridos em algumas células, de maneira a permitir uma indução ou dedução dos números em células que estejam vazias. Cada coluna, linha e região só pode ter um número de cada um dos 1 a 9. Resolver o problema requer apenas raciocínio lógico e algum tempo. Os problemas são normalmente classificados em relação à sua realização. O aspecto do sudoku lembra outros quebra-cabeças de jornal. Foi criado por Howard Garns, um projetista e arquiteto de 74 anos aposentado.
Fonte Wikipedia.
O sudoku é um jogo onde você pode aprender matriz, pois o mesmo também apresenta linhas e colunas em uma tabela. Jogue on-line.
Um Pouco de História - Surgimento da teoria das probabilidades.
Os
primeiros registros ligados à teoria da probabilidade aparecem na obra do
italiano Girolamo Cardano (1501-1576), sobre jogos de azar. Cerca de cem anos
depois, Blaise Pascal deu um novo impulso ao desenvolvimento da teoria da
probabilidade, por meio das cartas que trocou com Pierre de Fermat (1601-1665),
em que discutiam problemas ligados a jogos. Em sua obra sobre o triângulo
aritmético, datada de 1654, há também alguns tópicos sobre probabilidade.
No
entanto, o primeiro artigo completo sobre o assunto só foi escrito em 1713, por
Jacques Bernoulli, na obra Ars
Conjectandi (Arte de Conjecturar), que continha, inclusive, uma detalhada
exposição sobre permutações e combinações. A partir de então, outros matemáticos
dariam valiosas contribuições para o desenvolvimento da teoria das
probabilidades, cujas aplicações em áreas como Biologia, Economia, saúde,
tabuas aturiais, etc. não tardariam a ser reconhecidas.
domingo, 25 de maio de 2014
Video-aulas
Desde o ano passado a SEDUC-CE tem um acordo com o descomplica para que seus alunos possam acessar o referido site e ter acesso as videoaulas do mesmo.
Acesse as aulas de matemática com grande ênfase no ENEM aqui.
segunda-feira, 19 de maio de 2014
Matemática nos Jogos - Batalha Naval
A batalha Naval é um jogo bastante jogado e conhecido no mundo. Ele é uma ótima aplicação do conteúdo de matrizes, pois, nele também temos a associação de uma linha e uma coluna para cada quadrado, que representa os elementos de uma matriz.
Jogue on-line aqui.
sábado, 17 de maio de 2014
Matemática na TV
O desenho animado americano Cyberchase, exibido no Brasil pela TV Cultura, é uma animação educativa que mostra a matemática viva e presente no dia-a-dia, no cotidiano.
Conteúdos como números decimais, frações, arredondamento são motrados de forma clara e contextualizada, sem fala que o desenho é muito bom mesmo!
Fica a Dica! Os episódios estão disponíveis no YouTube.
sexta-feira, 16 de maio de 2014
quinta-feira, 15 de maio de 2014
DESCOMPLICANDO O ENEM - Conteúdo Programático de MATEMÁTICA
MATEMÁTICA E SUAS TECNOLOGIAS.
• Conhecimentos numéricos – operações em conjuntos numéricos (naturais, inteiros, racionais e reais), desigualdades, divisibilidade, fatoração, razões e proporções, porcentagem e juros, relações de dependência entre grandezas, sequências e progressões, princípios de contagem.
• Conhecimentos geométricos – características das figuras geométricas planas e espaciais; grandezas, unidades de medida e escalas; comprimentos, áreas e volumes; ângulos; posições de retas; simetrias de figuras planas ou espaciais; congruência e semelhança de triângulos; teorema de Tales; relações métricas nos triângulos; circunferências; trigonometria do ângulo agudo.
• Conhecimentos de estatística e probabilidade – representação e análise de dados; medidas de tendência central (médias, moda e mediana); desvios e variância; noções de probabilidade.
• Conhecimentos algébricos – gráficos e funções; funções algébricas do 1.º e do 2.º graus, polinomiais, racionais, exponenciais e logarítmicas; equações e inequações; relações no ciclo trigonométrico e funções trigonométricas.
• Conhecimentos algébricos/geométricos – plano cartesiano; retas; circunferências; paralelismo e perpendicularidade, sistemas de equações.
Fonte: Edital do ENEM 2014 - INEP.
Um Pouco de História - Sistemas Lineares
Origem dos sistemas lineares
O
estudo dos sistemas lineares desenvolveu-se, historicamente, com maior
intensidade nas civilizações orientais. Um dos capítulos do livro chinês Nove capítulos sobre a arte da Matemática
(aproximadamente século III a.c.) contém um tópico sobre equações
indeterminadas e a solução de um problema envolvendo um sistema linear com
quatro equações e cinco incógnitas. Os coeficientes desse sistema eram escritos
com barras de bambu sobre um tabuleiro, que desempenhava o papel hoje ocupado
pelas matrizes.
Muralha da China, local onde surgiram os sistemas lineares |
Um Pouco de História - Determinantes
Origem dos determinantes
Os
primeiros trabalhos sobre determinantes teriam surgido, quase na mesma época,
no Oriente e no Ocidente: em 1683, em um artigo do matemático japonês Seki Kowa
(1642-1708) e, dez anos depois, com o alemão Leibniz (1646-1716). Ambos
desenvolveram expressões matemáticas ligadas aos coeficientes das incógnitas
das equações de um sistema linear.
Outros
matemáticos como Cramer, Bézout, Laplace e Vandermonde também publicaram, no
século XVIII, artigos sobre determinantes e deixaram contribuições valiosas.
No entanto, somente no século XIX a teoria dos
determinantes ganhou maior impulso na Europa, com os trabalhos de Jacobi
(1804-1851)e Cauchy (1789-1857). A esse último atribui-se o titulo de criador
do termo “determinante”, além de ser o responsável por reunir, em 1812, tudo o
que era conhecido até então sobre o assunto.
Foto de Laplace. |
terça-feira, 13 de maio de 2014
segunda-feira, 12 de maio de 2014
Prorrogadas as inscrições da OBM.
36ª Olimpíada Brasileira de Matemática tem inscrições prorrogadas
As inscrições para a 36ª Olimpíada Brasileira de Matemática (OBM) foram prorrogadas. O prazo que terminaria nesta sexta-feira (9) foi estendido até o dia 20 de maio para garantir a inscrição de todos os interessados.
As escolas devem fazer o cadastro pela internet na página da competição (www.obm.org.br). As inscrições são gratuitas. Na última edição, em 2013, a OBM envolveu a participação de mais de 200 mil estudantes e seus professores.
A competição é dividida em quatro níveis e é aberta aos estudantes dos ensinos fundamental (a partir do 6º ano), médio e universitário de todas as instituições de ensino, sejam elas públicas ou privadas em todo o país.
As datas da competição foram mantidas. As provas da primeira fase devem ocorrer nas instituições cadastradas na terça-feira, 3 de junho, em horário livre. A segunda fase, também realizada nas instituições ocorrerá no sábado, 6 de setembro e a terceira e última fase nos dias sábado 25 e domingo 26 de outubro, em locais a serem definidos. A divulgação dos resultados está prevista para dezembro.
Fonte: Site da OBM.
quinta-feira, 8 de maio de 2014
domingo, 4 de maio de 2014
Descomplicando o ENEM - Logaritmos
Essa questão esteve na prova do ENEM de 2012.
Vejamos a resolução:
Trata-se de uma questão
envolvendo conhecimentos sobre logaritmos, função logarítmica e equação
logarítmica.
Veja que o valor de Mw
é dado no próprio enunciado. Substituindo temos uma equação logarítmica, veja:
Mw=-10,7+2/3log10
(M0)
7,3=-10,7+2/3log10
(M0)
Vamos agora determinar o
valor de M0 na equação:
7,3=-10,3+2/3log10
(M0)
7,3+10,3=2/3log10
(M0)
18,0=2/3log10 (M0)
18,0 • 3/2 = log10
(M0)
27,0 = log10 (M0)
Lembre-se que a base (10), elevada
ao logaritmo (27,0) é igual ao logarítmando. Assim temos:
M0=1027,00
Assinar:
Postagens (Atom)